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The integral in Eq. (7) will then read
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or be written in a series form,
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Equation (9), with the first two terms retained in the series
expansion, is substituted back in Eq. (7) and one obtains the
desired result,
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Here r = r(z) is determined from Eq. (6) and the value for the
pressure coefficient ¢, can again be found from Eq. (8).

The compressibility rule described by Eqg. (10) will be
tested on a symmetrical blunt-nosed airfoil. The exact pres-
sure distribution for this airfoil at nearly critical freestream
Mach number is given in Ref. 11 together with geometric
profile data. These again have been utilized to calculate the
incompressible solution by using a mapping method which is
briefly described in Ref. 12.  Variocus compressibility corree-
tions were applied to the incompressible values, and the c¢b-
tained results are plotted together with the exact values in
Fig. 1. It can be seen that none of the applied correction
formulas can satisfactorily account for the global change of
the pressure distribution with increasing freestream Mach
number. This is not surprising since the correction factors
are constants based on the freestream condition only. For a
discussion of introducing the profile surface slope into the
correction factors, the reader is referred to the work of
Wilby.t3

In Fig. 2 the result of the present analysis as applied to the
same airfoil problem of Fig. 1 is given. Due to the additional
dependence on profile curvature (see Fig. 8), the compressibil-
ity correction defined by Eq. (10) yields reduced corrections
to the Prandtl-Glauert value at locations of large curvature,
e.g., at the nose region. This is the essential feature of the
present approach and it is viewed as an improvement over
other correction methods.
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Rapid Calculation of Inviscid and
Viscous Flow over Arbitrary

Shaped Bodies

H. A. Dwysgr,* E. D. Doss,T and A. GoLpmant
University of California, Davis, Calif.

Introduction

HE purpose of this Note is to show how the high Reynolds

number viscous and inviseid flow over arbitrary shaped
two-dimensional bodies, and in particular airfoils, can be
calculated very rapidly and exactly with a modern digital
computer. The calculations will only be carried out for the
high Reynolds number case, so that the boundary layer and
potential low approximations can be made. (This of course,
restricts the viscous flow caleulation to a region of flow in
front of the separation point.) Also, the results presented in
this paper will be limited to incompressible flow and laminar
flow in the boundary layer; although turbulent flow calcula-
tions have been carried out.

The basic methods which are employed in the paper are
the following: 1) a numerical solution of the potential flow
equations by a general method developed by Theodorsen and
Garrick,! and 2) finite difference solution*? of the boundary-
layer equations near the body surface up to the point of flow
separation. These two methods were combined info one
computer program which calculated the potential and
boundary-layer flow over the body in a matter of seconds on
the digital computer. The input for this program consisted
solely of the body coordinates, angle of attack or net circula-
tion, and the fluid properties. (For the purpose of illustration
the calculation technique was applied to the flow over a NACA
0012 airfoil section.)

One of the main reasons for writing this Note is to point
out the power of the digital computer in solving these types of
difficult flow problems. As will be shown in the following,
the methods used are more exact and less time consuming than
all of the approximate techniques still employed in design and
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Fig. 1 Theodorsen transformation.

taught in fluid mechanies courses (such as linearized potential
flow techniques* and integral boundary-layers analyses).
Also, if a small amount of time is spent in printing out the re-
sults of the calculations cleverly, enormous physical insight
can be obtained by having the computer calculate the ratio
to the various terms in the momentum equation at various
parts of the boundary layer. For example, direct verification
of both the potential and boundary-layer flow approximations
can be readily obtained.

Methods of Approach

As mentioned previously the incompressible potential flow
outside of the boundary layer will be calculated by the use of
the theory developed by Theodorsen.! This theory is based
mainly on the methods of complex variables and conformal
mapping and has proven to provide exact and accurate results.
It has been applied successfully to arbitrary bodies, and it
lends itself to direct numerical solution. The basic idea be-
hind the method is to transform an arbitrary body into a
cirele. (Theordorsen,®i.e., shows how a square can be readily
transformed into a circle.) Since the potential flow over a
circle is known for the cases of zero and finite cireulation, all
that is required to solve the arbitrary body problem is to
transform back to the physical plane. A listing of the major
conformal mappings and their effects are presented in Fig. 1.
The actual solution of the problem reduces to a compact
integral equation which can be solved by a direct numerical
process. The numerical process used in this paper was similar
to that in Ref. 1, however, the calculations were carried out
with a digital computer, instead of graphically.

With the potential flow found by the procedure listed
above, the boundary-layer flow can be ecalculated. The
method of solution of the boundary-layer equations was an
implicit-difference scheme of the Crank-Nicolson type?? for
the laminar flow case and a full implicit scheme$ for the turbu-
lent boundary-layer flow. The incompressible boundary-layer
flow equations are given below:

ou/ox + ov/dy = 0 1)
uOu/dz + wWu/dy = —(1/p)dp/dx + vdu/dy?  (2)
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where « and v are the boundary layer velocities in the 2 and y
directions, respectively. (The 2 coordinate is measured
parallel to the wall and the y coordinate normal.)

The boundary-layer problem can be considerably simplified
by transforming the dependent and independent variables.
The object of the transformations are the following: 1) limit
boundary layer growth and locate approximately the edge of
the boundary layer a priori, 2) decrease velocity gradients in
both coordinate directions, and 3) remove leading edge
singularities and starting difficulties. The transformations
which were used are

Fr=wm. &=z 1= yu,/2vx)!?

where 4, = inviscid surface velocity. The resulting form of
the transformed boundary-layer equations are as follows:
continuity

£0f'/0¢ + (f'/0m)(n/2)(B= — 1) +
oV/on + B.f' =0 (3)
momentum
Ef'0f' /O + VOf/on = B.(1 — [ + 3%/ (4)
where
B = (&/uo)du./dE V = v(x/2vu,)V/?
V=V+/n/2B:—1)

In this transformed coordinate system the boundary-layer
profiles change mainly as a result of changes in pressure.
Therefore, the number of steps chosen to be taken in the z
direction can be obtained from the inviscid flowfield. This
usually means that the location of the z grid points correspond
with those obtained from the inviscid flow calculation, and
this simplifies the coupling of the two programs together.
The boundary conditions for Egs. (3) and (4) are

7=0 ff=0 V=0
=00 >~6 =10 (=1/p)dp/dx = u.du./dzx

The choice of 7 = 6 as the outer edge of the boundary layer
in laminar flow has been found to be satisfactory for 7!
problems treated, and can be changed to a larger value, if
necessary.

The transformations do not change the characteristics of the
finite difference methods, and the same stability and con-
vergence behavior is obtained in the physical or transformed
plane. A detailed listing of the Eqs. (8) and (4) in finite-
difference form can be found in Ref. 2 and 3.

Calculations and Results

In order to illustrate the power of the two caleulation
techniques, the potential and incompressible, laminar bound-
ary-layer flow over a NACA 0012 airfoil section has been inves-
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Fig.2 Laminar separation on a NACA 0012 airfoil.
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tigated for various angles of attack. The potential flow pro-
gram required only the shape of the NACA 0012 section and
the angle of attack to carry out the caleulation. On the
average a typical calculation was carried out for 80 points
around the airfoil section surface, and required only two sec-
onds of computer time on an IBM 7044 digital computer.
All of the velocity and pressure calculations agreed with 2%,
or better of those presented in Ref. 8. The small discrepancy
could be due to the fact that the present method probably
used more points on the airfoil surface in the calculations.
With these results it is seen that a digital computer can
truly make Theodorsen’s technique a useful and practical
everyday design technique.

With the inviseid velocity and pressure caleulated from the
potential flow, the boundary-layer flow can be computed.
The boundary-layer calculation starts at the stagnation point
and proceeds step by step in the z direction until the point of
separation (separation is defined as the point where u first
becomes negative) is reached, after which it is impossible to
proceed further with Eqs. (3) and (4). The results of these
calculations are shown in Fig. 2 where the laminar separation
point on the upper surface of the NACA 0012 airfoil section
has been computed as a function of the angle of attack. The
ordinate of the graph is the cordwise distance from the zero
angle-of-attack stagnation point, whereas the abscissa is the
local angle of attack.

For angles of attack less than 4° or 5° it can be seen from
Fig. 2 that the laminar flow calculations are academic, since
transition occurs on the airfoil section before laminar separa-
tion. However, for angles of attack equal to 50 or greater,
laminar separation occurs before transition. Actually, the
laminar separation causes the formation of a separation bub-
ble, which plays a significant role in transition and turbulent
boundary-layer reattachment. In Ref. 9 measurements on
the location of the laminar separation bubble were presented,
and it is seen from Fig. 2 that agreement between the theoreti-
cal calculations and experiments is excellent. The average
boundary-layer calculation took four seconds of computer
time on an IBM 7044 computer, and the step size in the 5
direction was An = 0.1. (This corresponds to sixty points
across the boundary layer for n - « =~ 6.0.) The step size
in the z direction was made variable, so that small steps were
taken in regions of large pressure variations and large steps
in regions of small pressure variation. Also, the experimental
location of the laminar separation point should not be sensi-
tive to Reynold’s number since the mechanisms for the causa-
tion of both the separation bubble and turbulent reattach-
ment are basically inviseid.

Summary and Conclusions

From the previous calculations it was shown that the inviseid
flow, pressure distribution and boundary layer flow can be
caleulated exactly and rapidly over typical airfoil sections.
The calculations involve only seconds of computer time on an
IBM 7044 computer (not large by current standards), and are
capable of giving as much detail as desired about the flowfield.
Also, the calculation procedures presented are applicable to
arbitrary shaped bodies, and their validity is limited only by
the validity of the potential and boundary-layer approxima-
tions themselves. Because of the large scale availability of
digital computer facilities throughout the world, techniques
of caleulation like those presented in this paper should have
a great impact on the teaching of aerodynamics and on the use
of theory in design procedures.
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Ratio of Turbulent Flight Miles to Total
Flight Miles in the Altitude Range
45,000-65,000 ft
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Introduction

HEN an aircraft that is flying through a portion of the

atmosphere in which there are no clouds undergoes ac-
celerations that cannot be directly attributable to the move-
ment or setting of the control surfaces or to the flight charac-
teristics of the aircraft, the aircraft is said to be in clear air
turbulence. The accelerations of the aireraft are funetions of
the weight and characteristics of the aireraft in addition to the
atmospheric gusts. If the ratio of the turbulent flight miles
to total flight miles is to be computed, definitions of turbulent
and total flight miles are required. The definition of the
turbulent flight miles must include statements that give 1) the
lower limit of accelerations that are considered to be turbu-
lence, 2) the frequency interval of interest, and 3) a quantita-
tive evaluation of the duration of turbulence. The ratio may
also be a function of 1) the distribution of the total flight
miles by season, altitude and underlying terrain, 2) the use
and relative success of turbulence search or avoidance pro-
cedures, and 3) pattern flying through a known turbulent
region.

Discussion and Results

In the High Altitude Clear Air Turbulence (HICAT) pro-
gram, Crooks, Hoblit, and Prophet! defined turbulence as
existing if rapid c.g. accelerations in excess of +0.10 g were
observed for a duration of at least 10 sec. In his review of the
VGH data from 768,000 miles in the altitude range 40,000-
70,000 ft, Steiner? defined turbulence to exist ‘“whenever the
accelerometer trace was disturbed and contained gust veloci-
ties (presumably ‘derived’ gust velocities) greater than 2 fps.”
A comparison of the HICAT deived gust velocities with those
given by Steiner indicates that the two definitions are roughly
equivalent. Crooks et al.,! and Ashburn, Waco, and Melvin®
also defined turbulence in terms of the rms gust velocity.
This definition is not useful for determining the ratio of tur-
bulent flight miles to total flight miles because the rms gust
velocity data are not available for all the turbulent regions
observed.
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